
Lecture 5

Substation Automation Systems

1

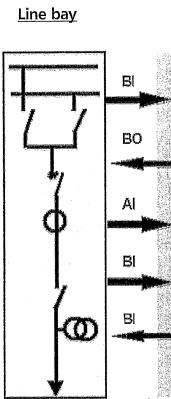
Course map

2

1

Contents of the Lecture

- Part 1 – Substation Automation
 - Components & Architectures
 - Substation Automation Functions
 - Communication within the Substation (Intro)
- Part 2 – Intro to Helinks


3

Part 1 Components & Architectures

4

Process Interface

BI Binary Input
BO Binary Output
AI Analog Input
FI Filter
AD Analog/Digital Converter

Intelligent electronic device (IED)
for protection and control

Figure 6-3 Process connection to a typical IED

5

The interfaces

- **Analog Input**

- CT & VT for Current & Voltage measurements
- Ranges 1-5A, 100-200 V AC
- Temperature

- **Binary Input**

- Breaker status, Normally using two indicators to indicate intermediate status
- Tap changer positions

- **Binary outputs**

- Controlling the operation of circuit breakers/switches
- Two BO in series for normal switching
- One single BO for circuit breaker tripping

- **Analog outputs**

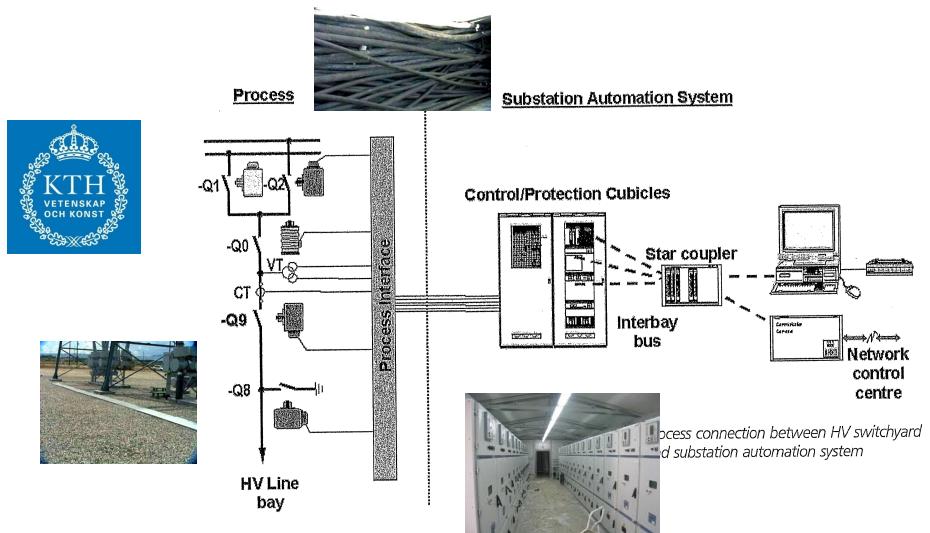
6

Measurement accuracy

Function/Device	Accuracy	Comments
Instrument transformer: transforms kV to range of +/-200 V	Relative accuracy at nominal value 0.5 %	An accuracy of 0.5 % in average, is normally used for plausibility check of measurands - more details see in chapter 5.
Interposing transformer from 200 V to 10 V	Relative accuracy at nominal value 0.1 %	Acts as barrier against disturbances as well
Filter	Influences frequency range only; no influence on the RMS value.	
A/D converter 16 bit	Conversion inaccuracy can normally be neglected. The inaccuracy depends on the bit range that is used for the measurand range (e.g full 16 bit signed used for needed range => accuracy is $2^{-14} = 0.006\%$)	An 8 bit measurand (either for transmission, or from A/D conversion), leads to an accuracy of 2.5 %, a 12 bit measurand (11 bit + sign) to 0.25 %
Scaling	Can be neglected, if the result is a 32 bit floating point (accuracy better than 16 bit integer)	32 bit floating point has a mantissa of 24 bits
Communication oscillation suppression delta	Depending on the delta: to get a sufficient communication load reduction, often around 0.1 % of the measurand normal/nominal value is needed	The inaccuracy of cyclic sending is zero at the moment of sending. If the maximum change rate of the measurand is not known, no accuracy can be estimated in between.

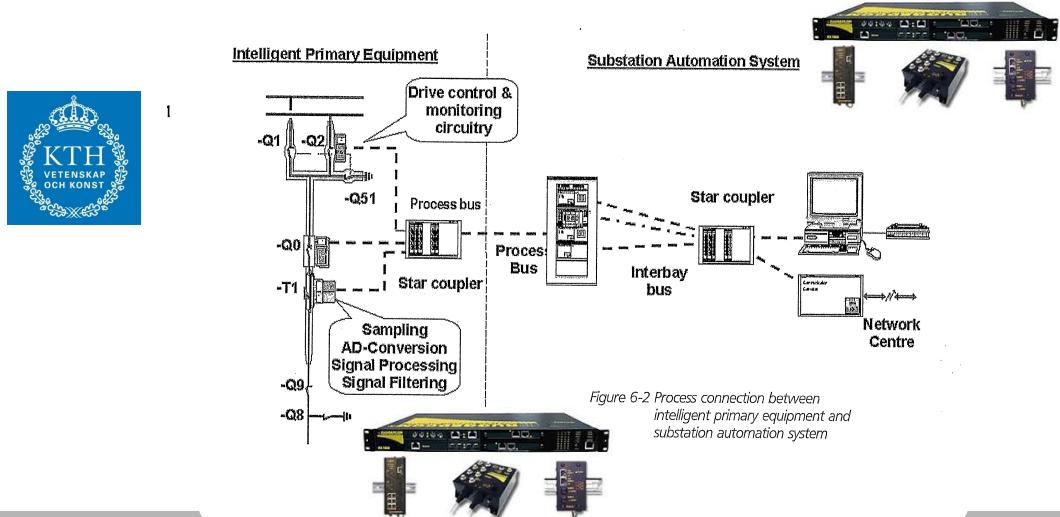
7

Local systems



RTU - Remote Terminal Units
PLC - Programmable Logic Controllers
IED - Intelligent Electronic Devices

...


8

Traditional SAS architecture

9

Architecture with "Intelligent" primary equipment

10

Local systems

RTU - Remote Terminal Units
PLC - Programmable Logic Controllers
IED - Intelligent Electronic Devices
...

11

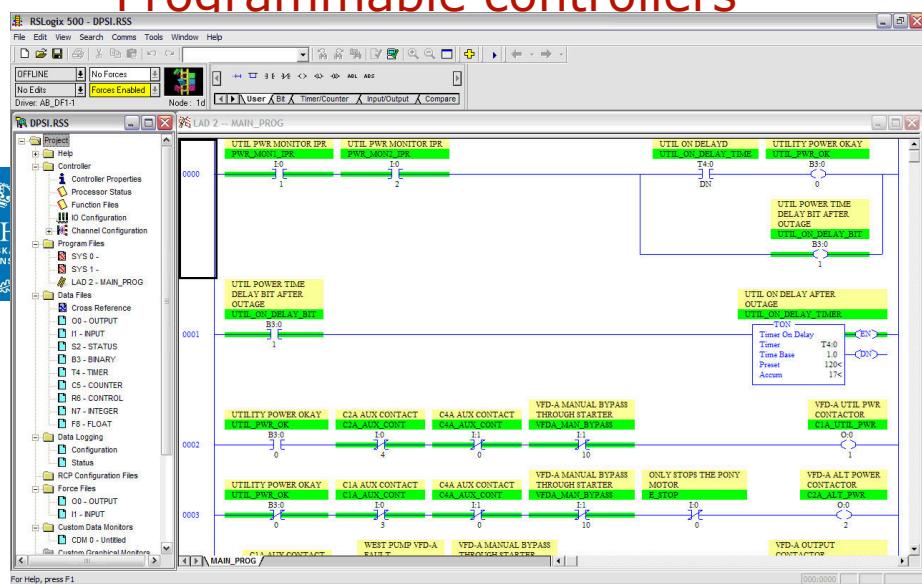
Substation automation

Common components

- Intelligent Electronic Device (IED)
 - Digital protective relay with added functionality
 - Can usually interface with RTU
 - Report events and measurement data
 - Receive commands from RTU/SCADA
 - Advanced functions need IEDs to communicate with each other
 - Horizontal communication
 - Control functions can include
 - Load tap changer controller
 - CB controller
 - Capacitor bank switches
 - Recloser controllers
 - Voltage regulators

12

Programmable controllers


PLC programming

- Automation of electromechanical processes
- Built for tough environments
- Hard real-time system – outputs in bounded time
- Fairly simple and cheap devices.

13

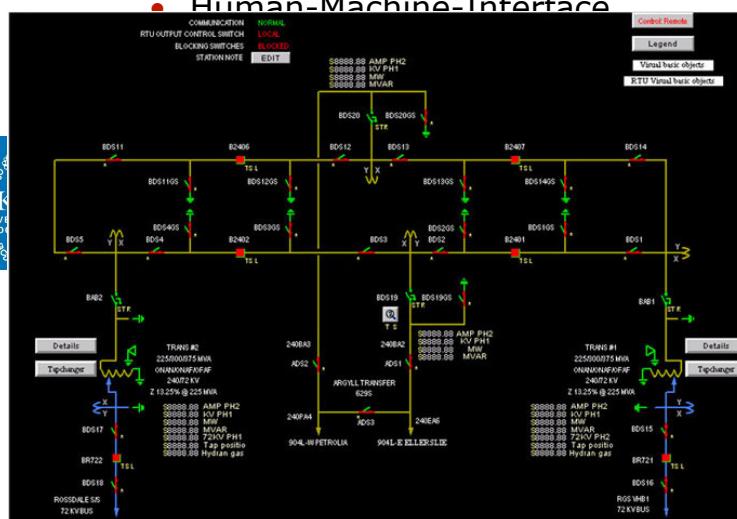
Programmable controllers

14

Substation automation

Common components

- Remote Terminal Unit (RTU)
 - For SCADA communication
 - Serial communication
 - Standard protocols
 - Modbus
 - IEC 60870-5-101/104
 - DNP3
 - ICCP


- Better suited to wide area telemetry than PLCs

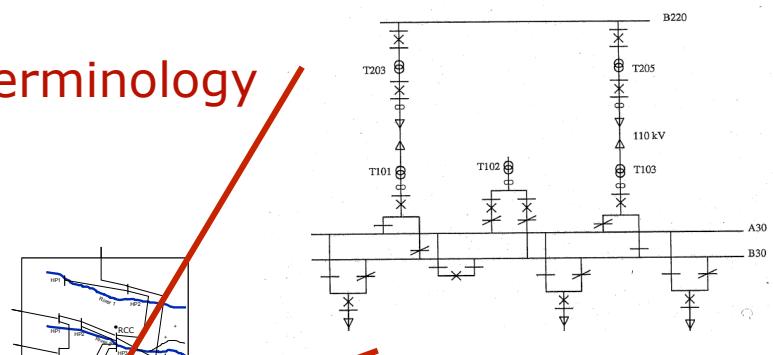
15

Substation automation

Common components

- Human-Machine-Interface

16


Terminology

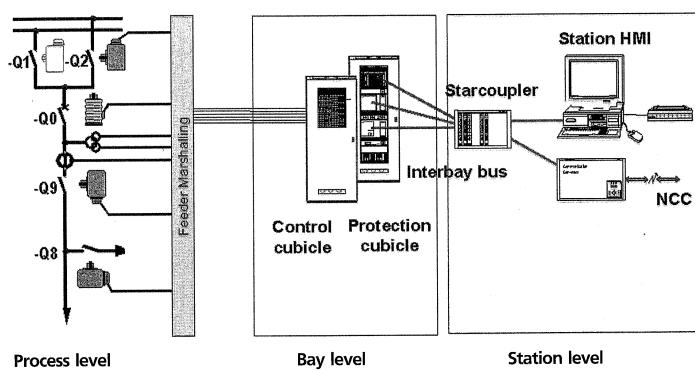
- The terminology used for describing devices and Architectures varies significantly across vendors as well as with age and size of a particular substation
- In this course we will use three different terms:
 - *Station Controller*, the top level controller in a substation
 - *Bay controller*, the unit controlling a bay in a substation
 - *Relay*, at the lowest level controlling a single object
- *Relays and Bay controllers* are implemented in IEDs – Intelligent Electronic Devices
- The station controller is a Industrial PC/server

17

Terminology

18

Terminology


Station

Bay

Object

19

Terminology

20

Part 1

Substation Automation Functions

21

Protection!

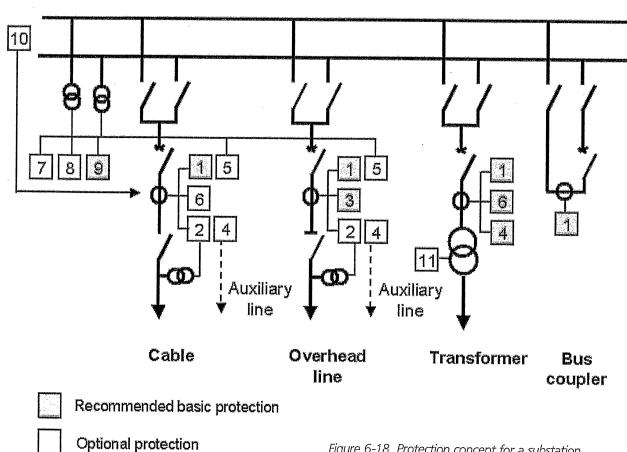


Figure 6-18 Protection concept for a substation

1. Overcurrent protection
2. Distance protection
3. Autoreclosure relay
4. Differential protection
5. Directional earth fault protection
6. Overload protection
7. Frequency relay
8. Voltage relay
9. Earth fault indication relay
10. Busbar protection system
11. Buchholz protection, thermal monitoring

22

What do we want to automate?

Functional area	Functionality				
	CB's	Isolators	Contactors		
Interlocking	CB failure	Intertipping			Simultaneous trips
Tripping sequences					Network re-configuration
Switching sequences	Automatic transformer changeover	Automatic busbar changeover	Restoration of supply following fault		
Load management	Load shedding	Load restoration	Generator despatch		
Transformer supervision	OLTC control	Load management			
Energy monitoring	Import/export control	Energy management	Power factor control		
Switchgear monitoring	AIS monitoring	GIS monitoring			
Equipment status	Relay status	CB status			
Parameter setting	Relays	Transformers	Isolator status		
HMI functionality	Access control	One-line views	Switching sequences		
	Trend curves	Harmonic analysis	System views	IED configuration	
	Interface to SCADA	Alarm processing	Remote access	Event logging	
			512	Disturbance analysis	

Table 24.6: Typical substation automation functionality

- Different areas of automation that can be built into a Substation Automation System

23

Interlocking

- To ensure that operation of Switchgear is safe and in accordance with standards
- For instance preventing of moving of a disconnector carrying load
- Implemented as functions in a bay Controller that controls the switchgear in the bay.

See SAS Handbook, 6.3.3.3 & 6.3.4.3

24

Switching Sequences

- To ensure that switching operations are performed in a correct sequence, and to automate manual work
- For example, transferring a feeder from one busbar to another, or restoration after a fault
- Implemented in station or bay controller depending on scope of the sequence

See SAS Handbook, 6.3.5.1

25

Load Management

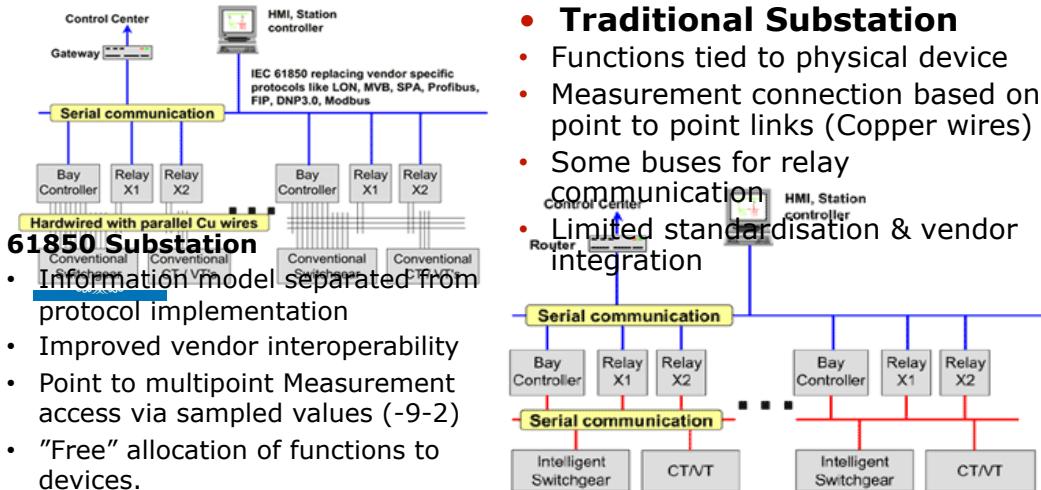
- Automation shedding of load, and restoration of load.
- For example as a result of under frequency conditions, feeders are disconnected.
- Implemented at station level control

See SAS Handbook, 6.3.5.5

26

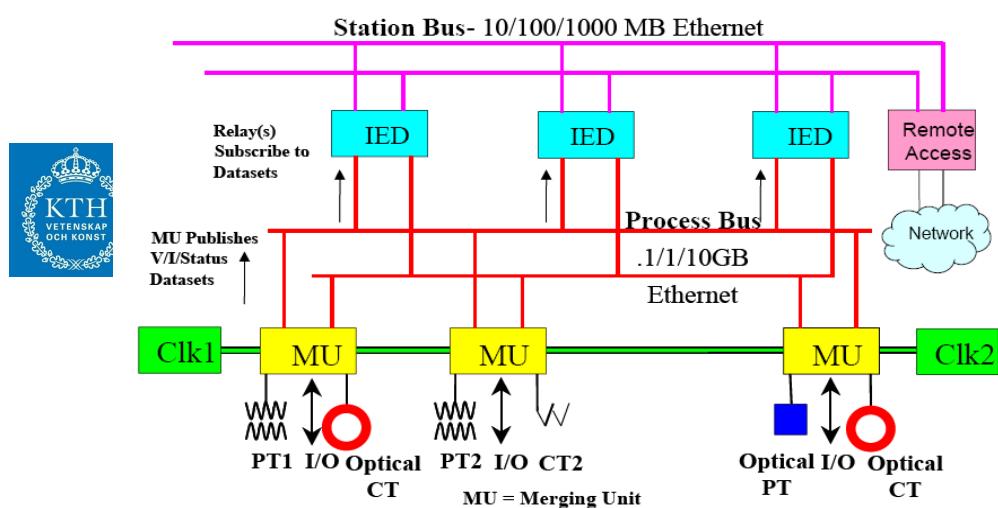
Communication in the Substation (Intro)

27



What to Communicate?

Data type	Maximum allowed age	Data integrity	Exchange method	Remarks
Alarm	1 s	Medium	Spontaneous	Alarms are urgent process changes that must be brought to the attention of an operator, to perform corrective actions
Commands	1 s	High	Spontaneous	Commands directly act on the process
Process state data	2 s (binary), 5-10 s (measurands)	Medium	Spontaneous	Gives the operator an overview on the process state
Time stamped events	10 s	Low	On request	Sequence of event data is used for later analysis of a problem
Interlocking data	5 ms (fast, block)	High (directly influences the process via commands)	Spontaneous	Used to prevent dangerous commands
Interlocking data (state information), other Automatics	100 ms	High (directly influences the process via commands)	On request (upon a command)	Used for Interlocking to prevent dangerous commands; or for automatics like load-shedding
Trip from protection	3 ms	High (directly influences the process via trips)	Spontaneous by fault in the power system or in the switchgear	Used to clear dangerous situations


28

Substation Automation Development

29

Substation Communication Systems

30

Part 1 System Configuration

31

System Configuration

- Substation Automation Systems can have several 10s to 100 different programmable devices.
- Managing functionality & data spread over several platforms becomes a challenging task.
- Consider also that systems from separate vendors often are used.
- Cost of an SAS is not driven by hardware but rather by configuration work!!

32

Substation automation

Configuration

- Substation Automation Systems can have several *10s to 100* different programmable devices.
- Managing functionality & data spread over several platforms becomes a challenging task.
- Consider also that systems from separate vendors often are used.
- Cost of a SAS is not driven by hardware but rather by configuration work!!

33

Substation automation

The screenshot shows the ABB REx670 Parameter Setting software interface. The left pane displays a 'Project Explorer' with a tree structure for '100070 DEMO02' under 'Plant Structure', including 'Substation', 'Voltage Level', 'Bay', 'REL670', 'REL670P', 'Settings', 'Tiva', 'General settings', 'Setting group NT', 'Differential protection', 'Overcurrent protection', 'Distance protection', 'Zero sequence protection', 'Autoreact', 'Current protection', and 'Overload protection'. The right pane is titled 'REx670 - Parameter Setting' and contains a table with columns: Group / Parameter Name, IED Value, PC Value, Unit, Min, and Max. The table includes rows for various parameters such as Operation, OperationDir, IZL, RI, ZD, RZP, RPP, RPE, OperationPP, TimerBPP, IPP, OperationPE, TimerBPE, IPE, IRRBPP, IRRBPE, IRRBPP, and IRRBPE.

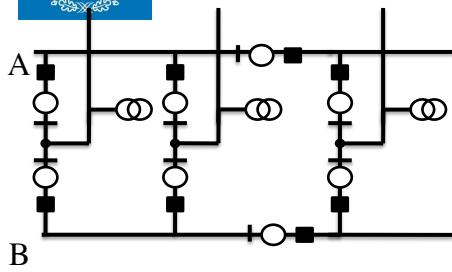
34

Conclusions

Many questions to try and answer...

- How do we organize/label/handle/process the data and commands?
- How are automation and protection applications implemented in these devices?
- What semantics and protocols do devices like IEDs and RTUs use to communicate?
- What standards are used in industry and how do they work?

35



SAS Discussion

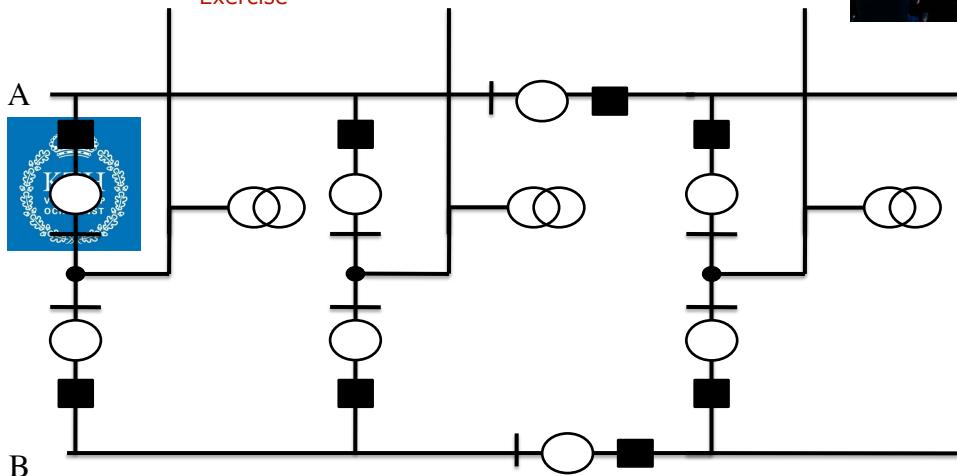
36

Substation automation

Exercise


RTUs, IEDs, VTs, CTs, breaker/isolator control/status signals, SCADA comms

- Given a double breaker station
 - Choose an interesting function to implement eg. interlocking
 - What kind of automation equipment
 - What would need to be communicated


Substation automation

Exercise

Substation automation

Exercise

